Math 304 (Spring 2015) - Homework 1

Solve the following linear systems:

Problem 1.

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
2 x_{2}+x_{3}-2 x_{4}+x_{5} & =1 \\
4 x_{3}+x_{4}-2 x_{5} & =1 \\
x_{4}-3 x_{5} & =0 \\
2 x_{5} & =2
\end{aligned}\right.
$$

Solution: The system is in strictly triangular form. We can use back-substitution.

$$
\left\{\begin{array}{l}
x_{5}=1 \\
x_{4}=3 \\
x_{3}=0 \\
x_{2}=3 \\
x_{1}=-2
\end{array}\right.
$$

Problem 2.

$$
\left\{\begin{array}{r}
-x_{1}+2 x_{2}-3 x_{3}+x_{4}=1 \\
-x_{1}-x_{2}+4 x_{3}-x_{4}=6 \\
-2 x_{1}-4 x_{2}+7 x_{3}-x_{4}=1
\end{array}\right.
$$

Solution: Write down the augmented matrix:

$$
\left[\begin{array}{cccc|c}
-1 & 2 & -3 & 1 & 1 \\
-1 & -1 & 4 & -1 & 6 \\
-2 & -4 & 7 & -1 & 1
\end{array}\right]
$$

use elementary row operations to find its row echelon form

$$
\left[\begin{array}{cccc|c}
1 & 0 & 0 & -6 / 17 & -2 / 17 \\
0 & 1 & 0 & -5 / 17 & 72 / 17 \\
0 & 0 & 1 & -7 / 17 & 43 / 17
\end{array}\right]
$$

x_{4} is a free variable, we have $\left\{\begin{array}{l}x_{1}=\frac{6 \alpha-2}{17} \\ x_{2}=\frac{72+5 \alpha}{17} \\ x_{3}=\frac{43+7 \alpha}{17} \\ x_{4}=\alpha\end{array}\right.$

Problem 3.

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =1 \\
2 x_{1}-x_{2}+x_{3} & =3 \\
-x_{1}+2 x_{2}+3 x_{3} & =7
\end{aligned}\right.
$$

Solution: Write down the augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
2 & -1 & 1 & 3 \\
-1 & 2 & 3 & 7
\end{array}\right]
$$

use elementary row operations to find its row echelon form

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & 1 & 1 / 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

use back-substitution we have $\left\{\begin{array}{l}x_{1}=1 \\ x_{2}=1 \\ x_{3}=2\end{array}\right.$

Problem 4.

$$
\left\{\begin{aligned}
x_{1}-3 x_{2}+x_{3} & =1 \\
2 x_{1}+x_{2}-x_{3} & =2 \\
x_{1}+4 x_{2}-2 x_{3} & =1 \\
5 x_{1}-8 x_{2}+2 x_{3} & =5
\end{aligned}\right.
$$

Solution: Write down the augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & -3 & 1 & 1 \\
2 & 1 & -1 & 2 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{array}\right]
$$

use elementary row operations to find its row echelon form

$$
\left[\begin{array}{ccc|c}
1 & -3 & 1 & 1 \\
0 & 1 & -3 / 7 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} is a free variable, we have $\left\{\begin{array}{l}x_{1}=\frac{2 \alpha+7}{7} \\ x_{2}=\frac{3 \alpha}{7} \\ x_{3}=\alpha\end{array}\right.$

Problem 5.

$$
\left\{\begin{array}{r}
x_{1}-2 x_{2}+4 x_{3}=2 \\
2 x_{1}-3 x_{2}+5 x_{3}=3 \\
3 x_{1}-4 x_{2}+6 x_{3}=7
\end{array}\right.
$$

Solution: Write down the augmented matrix:

$$
\left[\begin{array}{lll|l}
1 & -2 & 4 & 2 \\
2 & -3 & 5 & 3 \\
3 & -4 & 6 & 7
\end{array}\right]
$$

use elementary row operations to find its row echelon form

$$
\left[\begin{array}{ccc|c}
1 & -2 & 4 & 2 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

This system is inconsistent.

