Math 304 (Spring 2015) - Homework 1

Solve the following linear systems:

Problem 1.

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 5\\ 2x_2 + x_3 - 2x_4 + x_5 = 1\\ 4x_3 + x_4 - 2x_5 = 1\\ x_4 - 3x_5 = 0\\ 2x_5 = 2 \end{cases}$$

Solution: The system is in strictly triangular form. We can use back-substitution. $\begin{cases}
x_5 = 1 \\
x_4 = 3 \\
x_3 = 0 \\
x_2 = 3 \\
x_1 = -2
\end{cases}$

Problem 2.

$$\begin{aligned} -x_1 + 2x_2 - 3x_3 + x_4 &= 1 \\ -x_1 - x_2 + 4x_3 - x_4 &= 6 \\ -2x_1 - 4x_2 + 7x_3 - x_4 &= 1 \end{aligned}$$

Solution: Write down the augmented matrix:

$$\begin{bmatrix} -1 & 2 & -3 & 1 & | & 1 \\ -1 & -1 & 4 & -1 & | & 6 \\ -2 & -4 & 7 & -1 & | & 1 \end{bmatrix}$$

use elementary row operations to find its row echelon form

$$\begin{bmatrix} 1 & 0 & 0 & -6/17 & | & -2/17 \\ 0 & 1 & 0 & -5/17 & | & 72/17 \\ 0 & 0 & 1 & -7/17 & | & 43/17 \end{bmatrix}$$

 x_4 is a free variable, we have
$$\begin{cases} x_1 = \frac{6\alpha - 2}{17} \\ x_2 = \frac{72 + 5\alpha}{17} \\ x_3 = \frac{43 + 7\alpha}{17} \\ x_4 = \alpha \end{cases}$$

Problem 3.

$$\begin{cases} x_1 + 2x_2 - x_3 = 1\\ 2x_1 - x_2 + x_3 = 3\\ -x_1 + 2x_2 + 3x_3 = 7 \end{cases}$$

Solution: Write down the augmented matrix:

1	2	-1	1
2	-1	1	$\frac{1}{3}$
1	2	3	7

use elementary row operations to find its row echelon form

	$\begin{bmatrix} 1 & 2 & -1 & & 1 \\ 0 & 1 & 1/2 & & 2 \\ 0 & 0 & 1 & & 2 \end{bmatrix}$
use back-substitution we have	$\begin{cases} x_1 = 1 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$

Problem 4.

$$\begin{cases} x_1 - 3x_2 + x_3 = 1\\ 2x_1 + x_2 - x_3 = 2\\ x_1 + 4x_2 - 2x_3 = 1\\ 5x_1 - 8x_2 + 2x_3 = 5 \end{cases}$$

Solution: Write down the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 1 & | & 1 \\ 2 & 1 & -1 & 2 \\ 1 & 4 & -2 & 1 \\ 5 & -8 & 2 & | & 5 \end{bmatrix}$$

use elementary row operations to find its row echelon form

$$\begin{bmatrix} 1 & -3 & 1 & | & 1 \\ 0 & 1 & -3/7 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

x_3 is a free variable, we have \langle	$\begin{cases} x_1 = \frac{2\alpha + 7}{7} \\ x_2 = \frac{3\alpha}{7} \\ x_3 = \alpha \end{cases}$

Problem 5.

$$\begin{cases} x_1 - 2x_2 + 4x_3 = 2\\ 2x_1 - 3x_2 + 5x_3 = 3\\ 3x_1 - 4x_2 + 6x_3 = 7 \end{cases}$$

Solution: Write down the augmented matrix:

$$\begin{bmatrix} 1 & -2 & 4 & | & 2 \\ 2 & -3 & 5 & | & 3 \\ 3 & -4 & 6 & | & 7 \end{bmatrix}$$

use elementary row operations to find its row echelon form

$$\begin{bmatrix} 1 & -2 & 4 & 2 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

This system is inconsistent.